A Formal Framework for Hypersequent Calculi and their Fibring

نویسندگان

  • Marcelo E. Coniglio
  • Mart́ın Figallo
  • Jean-Yves Béziau
چکیده

Hypersequents are a natural generalization of ordinary sequents which turn out to be a very suitable tool for presenting cut-free Gentzent-type formulations for diverse logics. In this paper, an alternative way of formulating hypersequent calculi (by introducing meta-variables for formulas, sequents and hypersequents in the object language) is presented. A suitable category of hypersequent calculi with their morphisms is defined and both types of fibring (constrained and unconstrained) are introduced. The introduced morphisms induce a novel notion of translation between logics which preserves metaproperties in a strong sense. Finally, some preservation features are explored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibring Semantic Tableaux

The methodology of fibring is a successful framework for combining logical systems based on combining their semantics. In this paper, we extend the fibring approach to calculi for logical systems: we describe how to uniformly construct a sound and complete tableau calculus for the combined logic from calculi for the component logics. We consider semantic tableau calculi that satisfy certain con...

متن کامل

Sequent calculi based on derivations

Fibring is a meta-logical constructor that combines two given logics and produces a new one. In particular, the fibring of two sequent calculi is obtained by combining the languages of both calculi and taking all rules allowed in either calculus. By their own nature, proofs in the fibring have no relationship to proofs in the components, so that these are essentially different objects. In this ...

متن کامل

Bunched Hypersequent Calculi for Distributive Substructural Logics

We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut-elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large cl...

متن کامل

A Natural Deduction System for Intuitionistic Fuzzy Logic

Intuitionistic fuzzy logic IF was introduced by Takeuti and Titani. This logic coincides with the first-order Gödel logic based on the real unit interval [0, 1] as set of truth-values. We present a natural deduction system NIF for IF . NIF is defined by suitably translating a first-order extension of Avron’s hypersequent calculus for Gödel logic. Soundness, completeness and normal form theorems...

متن کامل

Hypersequent Calculi for Gödel Logics - a Survey

Hypersequent calculi arise by generalizing standard sequent calculi to refer to whole contexts of sequents instead of single sequents. We present a number of results using hypersequents to obtain a Gentzen-style characterization for the family of Gödel logics. We first describe analytic calculi for propositional finite and infinite-valued Gödel logics. We then show that the framework of hyperse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014